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A B S T R A C T

Amyloid positivity is an early indicator of Alzheimer’s disease and is necessary to determine the disease. In this
study, a deep generative model is utilized to predict the amyloid positivity of cognitively normal individuals
using proxy measures, such as structural MRI scans, demographic variables, and cognitive scores, instead of
invasive direct measurements. Through its remarkable efficacy in handling imperfect datasets caused by missing
data or labels, and imbalanced classes, the model outperforms previous studies and widely used machine
learning approaches with an AUROC of 0.8609. Furthermore, this study illuminates the model’s adaptability
to diverse clinical scenarios, even when feature sets or diagnostic criteria differ from the training data. We
identify the brain regions and variables that contribute most to classification, including the lateral occipital
lobes, posterior temporal lobe, and APOE 𝜖4 allele. Taking advantage of deep generative models, our approach
can not only provide inexpensive, non-invasive, and accurate diagnostics for preclinical Alzheimer’s disease,
but also meet real-world requirements for clinical translation of a deep learning model, including transferability
and interpretability.
1. Introduction

The possibility of preventing the development of Alzheimer’s dis-
ease (AD) is receiving increasing attention, particularly due to the lim-
ited availability of effective disease-modifying treatments (DMTs) [1,2].
Amyloid beta (A𝛽) deposition is used as a biomarker in prevention since
it reflects the pathophysiological changes occurring in the preclinical
stage of the disease [3,4]. While direct measurements of A𝛽 deposition
can be obtained through positron emission tomography (PET) or a lum-
bar puncture, these methods are inappropriate for cognitively normal
(CN) individuals because it is costly, time-consuming, and involves
exposure to radiation or considerable pain. Proxy measures can be
obtained relatively inexpensively and safely using structural magnetic
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resonance imaging (MRI) [5,6] or tests of cognitive function [7,8].
However, the relationships between these measures and the extent of
A𝛽 deposition are complicated.

Deep learning (DL) is capable of capturing complicated relationships
between features and outcomes, enabling the prediction of outcomes
based on given features [9,10]. If the outcome is a dichotomous vari-
able, DL constructs a non-linear decision boundary that separates data
with one outcome from those with the other. In clinical applications,
however, the dataset used for training is often imperfect: some features
or outcome values are missing, or the number of examples with each
outcome is very different. It can be caused by the cost of clinical tests,
the cost of physician diagnosis, or the prevalence of diseases/the rarity
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of hospital visits by healthy individuals. These problems can hinder
the generalization of the model by reducing the available training data
or introducing biases towards specific classes. In addition, different
clinicians may diagnose diseases based on different sets of features or
labeling criteria, which restricts the applicability of observations to new
datasets and diminishes the efficiency and utility of the trained model.
Furthermore, the non-linear nature of deep neural networks makes it
difficult for clinicians to interpret the model’s predictions, hindering
their ability to explain these predictions to patients. Addressing these
issues is critical for improving the effectiveness and generalizability of
the model.

In this study, we used a deep neural network to predict whether CN
individuals are in the preclinical stage (or amyloid positive CN individ-
uals) using data from structural MRI scans, demographic information,
and clinical scores. Our model demonstrated accurate predictions, and
its development also embodies three significant steps towards real-
world clinical application. Firstly, we trained our model on a dataset
with missing features and labels, and with imbalanced classes: some
cognitive scores have missing values, amyloid positivities are missing
for some participants, and the size of the A𝛽+ group is different
from that of the A𝛽- group. To address these problems, we adopted
the HexaGAN framework. Originally designed as a deep generative
model (DGM) for synthesizing real-world data through adversarial
learning [11,12], HexaGAN showed promising prediction performance
when training datasets are imperfect [12]. Additionally, we imple-
mented enhancements to HexaGAN, enabling it to proficiently handle
high-dimensional multimodal data. Secondly, we dealt with the sce-
nario of deploying a trained model on data collected from different
hospitals, where differences in feature sets and diagnostic criteria may
exist. We developed an appropriate prediction scheme to ensure the
adaptability of HexaGAN in such situations. Our findings demonstrate
that HexaGAN can predict amyloid positivity even when the testing fea-
tures do not perfectly align with those used in model training. Thirdly,
using explainable artificial intelligence (XAI) techniques, we identified
discriminative regions and variables that represent the features that
are important in the prediction of early amyloid pathology. These are
determined at the population level and thus provide physicians and
patients with the reliability of the model’s predictive ability. Therefore,
our considerations for clinical implementation, ranging from model
architecture to application, showed that our model can be successfully
used in real-world situations. The contribution of this work can be
summarized as follows:

• We develop a deep generative model that predicts the preclinical
stage of AD in cognitively normal individuals using structural MRI
scans, demographic information, and clinical scores.

• The proposed model effectively addresses the imperfect dataset
problem, including missing features or labels, and imbalanced
classes, by modifying the HexaGAN framework.

• Leveraging the generation capability of DGMs, the learned model
demonstrates robust generalization to data collected from differ-
ent hospitals, which have different feature sets and diagnostic
criteria.

• XAI techniques are used to identify discriminative regions and
variables that significantly contribute to the prediction of early
amyloid pathology. This provides physicians and patients with
reliable insights into the model’s predictive capability.

The rest of this paper is organized as follows. Section 2 provides
materials and the proposed methodology, including a description of
the datasets, preprocessing techniques, our deep generative model, and
the XAI method. Section 3 presents the experimental results obtained
from our model and comparisons with existing approaches. Section 4
provides in-depth discussions on the results, highlighting the strengths
and limitations of the proposed method.
2

2. Material and methods

2.1. Participants

The discovery dataset was obtained from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) database (http://www.adni.loni.usc.
edu). The discovery dataset was used to construct the model to address
the imperfect dataset problem and to verify that our model can robustly
predict amyloid positivity. It includes 539 CN participants enrolled
in the ADNI-1, ADNI-GO, ADNI-2, and ADNI-3 cohorts, who had T1-
weighted magnetic resonance imaging (MRI) scans from a screening
visit. The details of the ADNI design, participant recruitment, and
diagnostic criteria are published on the ADNI website (http://www.
adni.loni.usc.edu/methods/).

The practice dataset was obtained from the Samsung Medical Center
(SMC). The practice dataset consists of features and diagnostic criteria
different from the discovery dataset and was used to verify that our
model trained with data from a different cohort (in our study, the dis-
covery dataset) can make good predictions on data from one hospital.
It includes 343 CN participants who had T1-weighted MRI scans. All
participants underwent a detailed clinical interview and a neurologic
examination [13]. The study protocol was approved by the Institutional
Review Board of the SMC.

2.2. MRI acquisition

To construct the discovery dataset, we downloaded T1-weighted
MRI scans for 539 participants from ADNI’s database. Specifically,
we used 1.5 𝑇 non-accelerated magnetization-prepared rapid acqui-
sition gradient echo (MP-RAGE) scans for the ADNI-1 cohort, 3 𝑇
non-accelerated MP-RAGE or inversion recovery spoiled gradient echo
(IR-SPGR) scans for the ADNI-2 and ADNI-GO cohorts, and 3 𝑇 non-
accelerated MP-RAGE scans for the ADNI-3 cohort. Details of the MRI
protocols employed are available on the ADNI website.

For T1-weighted MRI scans of the practice dataset, we used 3 𝑇
turbo field echo images acquired at SMC. Detailed information about
acquisition protocols is described in the previous study [13].

2.3. Image preprocessing

T1-weighted MRI scans acquired from 539 participants were pre-
processed according to the standard procedures of image preprocessing
with FreeSurfer v.6.0.0 (http://surfer.nmr.mgh.harvard.edu). These in-
clude non-linear registration to Talairach space, intensity correction,
skull stripping, and anatomical segmentation of entire brain regions
(including the cerebral gray matter, white matter, and cerebellum) ac-
cording to the Hammersmith (HM) atlas [14]. The intracranial volume
(ICV) of each subject was computed for further analysis.

Originally, all the MRI scans that were non-linearly transformed
to Talairach space had a resolution of 256 × 256 × 256. Due to the
limitation of our graphical processing unit (GPU) memory, however,
we performed the two following steps. First, we reduced the field-of-
view (FOV) of our MRI scan volumes to 168 × 190 × 210, excluding
the non-brain background. We then extracted every 10th slice, from
the 20th to the 190th slice. Thus, the intensities of MRI scans had a
resolution of 168 × 190 × 18. MRI scans were normalized to the range
of 0–1.

After preprocessing, one participant was excluded from the ADNI
dataset due to an image preprocessing failure. Therefore, the final
number of participants used in this study is 538.

http://www.adni.loni.usc.edu
http://www.adni.loni.usc.edu
http://www.adni.loni.usc.edu
http://www.adni.loni.usc.edu/methods/
http://www.adni.loni.usc.edu/methods/
http://www.adni.loni.usc.edu/methods/
http://surfer.nmr.mgh.harvard.edu
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Fig. 1. Methodological overview. (a) We aim to predict amyloid positivity from structural magnetic resonance imaging (MRI) scans, demographic information, and cognitive scores
from cognitively normal (CN) individuals. In its raw state, this dataset is imperfect to be fed directly into a classifier. (b) We address these real-world problems simultaneously by
enhancing the HexaGAN framework. (c) The generators (𝐺CG, 𝐺MI), discriminators (𝐷CG, 𝐷MI), encoders (𝐸ℎ, 𝐸𝐻 ), and classifier (𝐶) are designed to learn the model from dataset
having real-world problems.
2.4. Amyloid positivity determination

For the discovery dataset, global amyloid positivity was determined
from PET scans, which consisted of four 5 min frames, acquired 50–
70 min after an injection of 370 ±37 MBq of [18F]-AV45. Amyloid
positivity is defined as a cortical AV45 standardized uptake value ratio
(SUVR) > 1.11 [15]. AV45 SUVRs were average values of frontal,
anterior cingulate, precuneus, and parietal cortex relative to the cere-
bellum, which were extracted from the ADNIMERGE file. Further de-
tails of PET imaging protocols are published on the ADNI website and
elsewhere [15].

For the practice dataset, global amyloid positivity was determined
by the scoring system as described in the previous study [16], where
three medical experts visually assessed [18F]-Florbetaben PET scans [17]
acquired using PET/CT scanner at SMC.

2.5. Tabular data

The tabular data consists of a total of 27 demographic, genetic,
and clinical variables relating to individuals, which are available in
the ADNI database. The demographic variables are age, sex, years of
education, intracranial volume, and handness. The genetic variables
are the number of APOE 𝜀4 alleles. The 21 clinical variables measure
cognitive function and instrumental activities of daily living (IADL).

Three of the clinical variables measure AD-related global cogni-
tive impairment: a mini-mental state examination (MMSE) score; a
clinical dementia rating sum of boxes (CDR-SB); and a score for the
Alzheimer’s disease assessment scale, 13-item version (ADAS13). In ad-
dition, 18 variables were extracted from the ADNI neuropsychological
battery considering redundancy in the cognitive domain [18], which
3

are listed in Table 2. From the results of a Rey auditory verbal learning
test (AVLT), we created learning and memory variables by using the
‘Immediate recall’, ‘Delayed recall’, and ‘Recognition’ scores, and by
computing ‘Learning’, ‘Intrusion error (IntErr)’, ‘Proactive interference
(ProINTFC)’, and ‘Retroactive interference (RetroINTFC)’ scores [19].
Finally, two variables were created from measurements of instrumen-
tal activities of daily living (IADL): scores from a functional activity
questionnaire (FAQ) and for everyday cognition assessed by the patient
(ECogPt). Where more than one set of scores was available for the
period within 90 days of a participant’s MRI scan, we chose the set
with the lowest proportion of missing entries.

All 27 variables in the tabular data were normalized to the range
0–1.

2.6. Formulation of the imperfect dataset problem

The dataset we used includes observations with missing labels or
missing values in clinical information, and amyloid negative (A𝛽-)
individuals outnumber amyloid positive (A𝛽+) individuals (Fig. 1(a)).
Therefore, we define the imperfect dataset problem as sub-problems,
including missing data, class imbalance, and missing label problems.
To formulate these sub-problems, the dataset  is defined.  consists of
MRI scans 𝐼 , tabular features 𝐭 ∈ R𝑑 (𝑑 = 27), and amyloid positivities
𝑦 ∈ {0, 1}. The numbers of individuals in A𝛽+ (𝑦 = 1) and A𝛽- (𝑦 = 0)
groups are denoted as 𝑛1 and 𝑛0 respectively. 𝑁𝑙 = 𝑛1 + 𝑛0 is the
number of labeled participants, and 𝑁𝑢 is the number of unlabeled
participants. We now introduce two Boolean objects 𝐦 ∈ {0, 1}𝑑 and
𝑜 ∈ {0, 1} that represent the missingness of tabular features and labels.
We also introduce 𝑦𝑔 to represent the minority class, which is the A𝛽+
group in this study. We can now divide  into labeled data (denoted
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as 𝑙 = {(𝐭𝑛,𝐦𝑛) , 𝐼𝑛, (𝑦𝑛, 𝑜𝑛 = 1)}𝑁𝑙
𝑛=1), and unlabeled data (denoted as

𝑢 = {(𝐭𝑛,𝐦𝑛) , 𝐼𝑛, 𝑜𝑛 = 0}𝑁𝑢
𝑛=1).

Variables created from labeled data are marked with the subscript
, unlabeled data with the subscript 𝑢, and synthesized data with the
ubscript 𝑔. Two or more subscripts are combined to simplify the

notation (e.g., 𝐭𝑙 and 𝐭𝑢 can be combined into 𝐭𝑙𝑢).

2.7. The deep generative model

We modified HexaGAN [12] to predict early amyloid pathology
from the imperfect dataset described above. Our model consists of
seven components (Fig. 1(b) and (c)). The auxiliary encoder 𝐸ℎ is a
new addition to HexaGAN, which maps high-dimensional image data
to a low-dimensional embedded vector 𝐡. The auxiliary encoder and
the remaining six components, employed in the HexaGAN originally,
play different roles in classifying A𝛽+ and A𝛽- groups, as explained
below:

• 𝐸ℎ is an encoder that receives an image and synthesizes an
embedded vector 𝐡.

• 𝐸𝐻 is an encoder that receives table data and 𝐡 to synthesize
hidden vector 𝐇.

• 𝐺MI is a generator that receives 𝐇, fills missing data, and synthe-
sizes �̂� (for conditional generation).

• 𝐷MI is a discriminator that distinguishes between real (non-
missing) and fake (missing) elements of imputed data and em-
bedding vector elements.

• 𝐺CG is a generator that receives (minority) class labels and gen-
erates a hidden vector 𝐇𝑔 .

• 𝐷CG is a discriminator that receives class labels and hidden
vectors 𝐇 to distinguish between real and fake hidden vectors.

• 𝐶 is a classifier that predicts amyloid positivity by receiving
imputed data �̂� and an embedded vector 𝐡.

Our model receives 18 neuropsychological variables and 18 slices
from the total 210 coronal slices via decimation as input. Among
them, MRI slices 𝐼𝑙 and 𝐼𝑢 go through 𝐸ℎ to create embedded vec-
tors 𝐡𝑙 and 𝐡𝑢, respectively (Fig. 1(b)). This allows us to deal with
high-dimensional MRI scans because 𝐸ℎ extracts vectors of reduced
dimensionality (𝐡). In the case of tabular data 𝐭𝑙 and 𝐭𝑢, we replace
missing elements with noise using a Hadamard product as follows:

𝐡𝑙𝑢 = 𝐸ℎ(𝐼𝑙𝑢) (1)

𝐭𝑙𝑢 = 𝐦𝑙𝑢◦𝐭𝑙𝑢 + (1 −𝐦𝑙𝑢)◦𝐳𝑙𝑢, (2)

where the operator ◦ indicates the Hadamard product of two vectors,
and 𝐳𝑙 and 𝐳𝑢 ∈ [0, 1]𝑑 are random noise sampled from 𝑈 (0, 1).

2.7.1. Missing data imputation
The components used for missing data imputation are 𝐸ℎ, 𝐸𝐻 ,

𝐺MI, and 𝐷MI (MI stands for ‘missing imputation’). In this section, the
subscript of all variables without a subscript is 𝑙𝑢. To impute missing
elements, 𝐸𝐻 receives 𝐭, 𝐡, and 𝐦 and creates the hidden vector 𝐇 ∈
[−1, 1]𝑑𝐻 (Fig. 1(c)). Then 𝐺MI receives 𝐇 and creates �̄� and �̂� ∈ [0, 1]𝑑ℎ .
For tabular data, only the missing elements of 𝐭 are replaced with �̄�, and
imputed tabular data is called �̂�:

𝐇 = 𝐸𝐻 (𝐭,𝐡,𝐦) (3)

(�̄�, �̂�) = 𝐺MI(𝐇) (4)

�̂� = 𝐦◦𝐭 + (𝟏 −𝐦)◦�̄�, (5)

𝐡 and the synthesized �̂� are fed into 𝐷MI with the class label. For
labeled data, 𝑦 is used as the class label, and for unlabeled data, the
prediction from the classifier 𝐶 (e.g., for binary class, ⌊𝐶(�̂�𝑢,𝐡𝑢) + 0.5⌋)
is used and called 𝑦𝑢. Then, 𝐷MI computes (𝑑 + 𝑑ℎ +1) outputs, each of

̂

4

which is a value that measures whether elements of 𝐭, elements of 𝐡, a
and labels are missing (fake) or non-missing (real). For missing data
imputation, (𝑑 + 𝑑ℎ) elements of the output of 𝐷MI (except the last
element for a label) are used for loss functions. 𝐸𝐻 and 𝐺MI are learned
via element-wise WGAN hinge loss as follows:

𝑙𝑢
𝐺MI

= −E�̂�|𝐡,𝑦,𝐦

⎡

⎢

⎢

⎣

1
∑𝑑+𝑑ℎ

𝑖=1 1 − 𝑚𝑡ℎ
𝑖

𝑑+𝑑ℎ
∑

𝑖=1
(1 − 𝑚𝑡ℎ

𝑖 ) ⋅𝐷MI(�̂�,𝐡, 𝑦)𝑖
⎤

⎥

⎥

⎦

(6)

= −E�̂�|𝐡,𝑦,𝐦

[

1
∑𝑑

𝑖=1 1 − 𝑚𝑖

𝑑
∑

𝑖=1
(1 − 𝑚𝑖) ⋅𝐷MI(�̂�,𝐡, 𝑦)𝑖

]

, (7)

here 𝐷MI(⋅)𝑖 is the 𝑖th element of the output of 𝐷MI and 𝐦𝑡ℎ denotes
he missingness labels for the elements of �̂� and 𝐡. If the element is
issing, the label is marked as 0, and if it is non-missing, the label is
. For labeled and unlabeled data, the missingness label for �̂� (𝐦𝑡) is 𝐦,
nd the missingness label for 𝐡 (𝐦ℎ) is 𝟏 and (𝟏−𝐦ℎ) = 𝟎, because there
s no missing element in the image data. Therefore, 𝑙𝑢

𝐺MI
uses only the

irst 𝑑 elements for loss. 𝐷MI, which plays a critical role in missing data
mputation, uses the following element-wise adversarial loss:

𝑙𝑢
𝐷MI

= − E�̂�|𝐡,𝑦,𝐦

[

1
∑𝑑+𝑑ℎ

𝑖=1 𝑚𝑡ℎ
𝑖

𝑑+𝑑ℎ
∑

𝑖=1
𝑚𝑡ℎ

𝑖 ⋅min(0,−1 +𝐷MI(�̂�,𝐡, 𝑦)𝑖)
]

(8)

− E�̂�|𝐡,𝑦,𝐦

[

1
∑𝑑+𝑑ℎ

𝑖=1 1 − 𝑚𝑡ℎ
𝑖

𝑑+𝑑ℎ
∑

𝑖=1
(1 − 𝑚𝑡ℎ

𝑖 ) ⋅min(0,−1 −𝐷MI(�̂�,𝐡, 𝑦)𝑖)
]

.

(9)

n terms of a distance metric, Wasserstein distance is weaker than the
ensen–Shannon divergence used in a vanilla GAN [11], so it converges
etter with complex data distributions [20], and facilitates the imputa-
ion of missing values in the data. We expanded a projection layer [21]
n an element-wise manner to inject the conditional information of 𝑦
nto 𝐷𝑀𝐼 .

We also used a reconstruction loss that improves the imputation
rocess by learning from non-missing data as follows:

recon = E�̂�,�̂�|𝐦,𝐭,𝐡

[

1
𝑑

𝑑
∑

𝑖=1
𝑚𝑖 ⋅ (𝑡𝑖 − 𝑡𝑖)2 +

1
𝑑ℎ

𝑑ℎ
∑

𝑖=1
𝑚ℎ
𝑖 ⋅ (ℎ𝑖 − ℎ̂𝑖)2

]

(10)

= E�̂�,�̂�|𝐦,𝐭,𝐡

[

1
𝑑

𝑑
∑

𝑖=1
𝑚𝑖 ⋅ (𝑡𝑖 − 𝑡𝑖)2 +

1
𝑑ℎ

𝑑ℎ
∑

𝑖=1
(ℎ𝑖 − ℎ̂𝑖)2

]

, (11)

here 𝐦ℎ = 𝟏, so it can be omitted. In Eq. (11), 𝐸ℎ and 𝐸𝐻 serve
s the encoders of the autoencoder [22], while 𝐺MI plays a role as a

decoder, learning the distribution of non-missing elements. Therefore,
𝐸𝐻 is trained to optimize the following objective:

min
𝐸𝐻

𝑙𝑢
𝐺MI

+ 𝜆1recon, (12)

where 𝜆1 is a hyperparameter that adjusts the ratio between losses: a
value of 10 was used for experiments. Loss functions for 𝐺MI are also
related to class conditional generation; therefore, they will be described
later.

2.7.2. Class conditional generation
The class imbalance problem is addressed by 𝐺CG and 𝐷CG, which

synthesize hidden vectors conditioned on the minority class label 𝑦𝑔 ,
and by 𝐺MI, which oversamples the minority class by imputing all
features. 𝐺CG (CG stands for ‘conditional generation’) receives the noise
vector 𝐳𝑔 ∈ [0, 1]𝑑 sampled from 𝑈 (0, 1) and the minority class label 𝑦𝑔 ,
and creates the hidden vector 𝐇𝑔 . Then 𝐺MI receives 𝐇𝑔 and synthesizes
he oversampled data �̂�𝑔 and �̂�𝑔 :

𝑔 = 𝐺CG(𝐳𝑔 , 𝑦𝑔) (13)

�̂�𝑔 , �̂�𝑔) = 𝐺MI(𝐇𝑔). (14)

ere, �̂�𝑔 is computed on the basis that all elements are missing, and �̂�𝑔
s not obtained from a real image. Therefore, the missingness labels 𝐦𝑡

𝑔
nd 𝐦ℎ are zero vectors 𝟎 in the 𝑑 and 𝑑 dimensions, respectively.
𝑔 ℎ
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𝐷CG is trained to minimize WGAN hinge loss, considering 𝐇𝑙 as real
data and 𝐇𝑔 as fake data, as follows:

𝐷CG
= E𝐇𝑙 |𝑦

[

max(0, 1 −𝐷CG(𝐇𝑙 , 𝑦))
]

+ E𝐇𝑔 |𝑦𝑔

[

max(0, 1 +𝐷CG(𝐇𝑔 , 𝑦𝑔))
]

(15)

min
𝐷CG

𝐷CG
. (16)

To inject the conditional information of 𝑦 into 𝐷𝐶𝐺, we used a projec-
tion layer [21].

The goal of 𝐺CG can be subdivided into three. The first is to
synthesize a realistic 𝐇𝑔 , which can be learned through an adversarial
loss so that 𝐷CG can be fooled by 𝐺CG (Eq. (17)). The second is to syn-
thesize realistic �̂�𝑔 and �̂�𝑔 , which can be learned through element-wise
adversarial loss to deceive 𝐷MI (Eq. (18)). Third, since oversampled
data should be well-conditioned on the minority class, a prediction is
obtained by feeding �̂�𝑔 and �̂� to 𝐶, and then trying to minimize the
cross-entropy between the prediction and 𝑦𝑔 (Eq. (19)).

𝐺CG is trained to minimize the following three loss functions:

𝐺CG
= −E𝐇𝑔 |𝑦𝑔

[

𝐷CG(𝐇𝑔 , 𝑦𝑔)
]

(17)

𝑔
𝐺MI

= −E�̂�𝑔 ,�̂�𝑔 |𝑦𝑔

[

1
𝑑 + 𝑑ℎ

𝑑+𝑑ℎ
∑

𝑖=1
𝐷MI(�̂�𝑔 , �̂�𝑔 , 𝑦𝑔)𝑖

]

(18)

𝑔
𝐶 = E�̂�𝑔 ,�̂�𝑔 |𝑦𝑔

[

−𝑦𝑔 ⋅ log𝐶(�̂�𝑔 , �̂�𝑔)
]

(19)

in
𝐺CG

𝐺CG
+ 𝜆2

𝑔
𝐺MI

+ 𝜆3
𝑔
𝐶 , (20)

here 𝜆2 and 𝜆3 are hyperparameters used as coefficients for 𝑔
𝐺MI

nd 𝑔
𝐶 respectively. In experiments, we used 𝜆2 = 1 and 𝜆3 = 0.01.

ince missingness labels for �̂�𝑔 and �̂�𝑔 are 0, 𝑔
𝐺MI

can be derived. In
ddition, as a critic for the synthesized data, 𝐷MI is also trained through
dversarial loss, as follows:

𝑔
𝐷MI

= −E�̂�𝑔 |�̂�𝑔 ,𝑦𝑔

[

1
𝑑 + 𝑑ℎ

𝑑+𝑑ℎ
∑

𝑖=1
min(0,−1 −𝐷MI(�̂�𝑔 , �̂�𝑔 , 𝑦𝑔)𝑖)

]

. (21)

𝐷MI is trained to accurately predict all input features (�̂�𝑔 and �̂�𝑔) as
missing.

We now have a missingness label for all labeled, unlabeled, and
synthesized data. The adversarial loss for labeled and unlabeled data
is 𝐺𝑙𝑢

MI
and that for synthesized data is 𝑔

𝐺MI
. In addition, we can use a

reconstruction loss recon for non-missing data to learn 𝐺MI as follows:

min
𝐺MI

𝑙𝑢
𝐺MI

+ 𝑔
𝐺MI

+ 𝜆1recon, (22)

where 𝜆1, the coefficient for the reconstruction loss, was set to 10,
which is the same value used to update 𝐸.

2.7.3. Classification and semi-supervised learning
The missing label problem is addressed by semi-supervised learning

of two components; the classifier 𝐶 and the last neuron of the output
layer of 𝐷MI. When a mini-batch of data enters the model, we set the
number of 𝑦𝑔 as the difference between the amount of majority class
data and that of minority class data in the mini-batch. Thus, the class
labels of input features 𝐬𝑙 = (𝐡𝑙 , �̂�𝑙) and 𝐬𝑔 = (�̂�𝑔 , �̂�𝑔) together are now
balanced and used to train the classifier 𝐶. Then, the mini-batch and
oversampled data are used for calculating the cross-entropy loss as
follows:

𝑙𝑔
𝐶 = E�̂�𝑙 |𝐡𝑙 ,𝑦𝑙

[

−𝑦𝑙 ⋅ log𝐶(𝐬𝑙)
]

+ E𝐬𝑔 |𝑦𝑔
[

−𝑦𝑔 ⋅ log𝐶(𝐬𝑔)
]

. (23)

In addition, 𝐶 can synthesize a pseudo-label 𝑦𝑢 for �̂�𝑢 and 𝐡𝑢. The
synthesized pseudo-label can be assessed by 𝐷MI, as follows:

𝑦
𝐶 = −E𝑦𝑢|�̂�𝑢 ,𝐡𝑢∼𝑝𝐶

[

𝐷MI(�̂�𝑢,𝐡𝑢, 𝐲𝑢)𝑑+𝑑ℎ+1
]

(24)

𝑦
𝐷MI

= E𝑦𝑢|�̂�𝑢 ,𝐡𝑢∼𝑝𝐶

[

𝐷MI(�̂�𝑢,𝐡𝑢, 𝑦𝑢)𝑑+𝑑ℎ+1
]

− E𝑦𝑙 |�̂�𝑙 ,𝐡𝑙

[

𝐷MI(�̂�𝑙 ,𝐡𝑙 , 𝑦)𝑑+𝑑ℎ+1
]

,

5

(25)
where 𝑝𝐶 is the distribution of the classifier. Eqs. (24) and (25) can be
interpreted as representing the Wasserstein adversarial loss between 𝐶
and 𝐷MI(⋅)𝑑+𝑑ℎ+1. In this context, 𝐶 functions as the label generator,
while 𝐷MI(⋅)𝑑+𝑑ℎ+1 acts as the label discriminator. It has been shown
that such adversarial learning helps supervised learning by minimiz-
ing the ODM cost [12,23]. Finally, 𝐶 and 𝐷MI are trained with the
following objectives:

min
𝐶

𝑙𝑔
𝐶 + 𝜆4

𝑦
𝐶 (26)

min
𝐷MI

𝑙𝑢
𝐷MI

+ 𝑔
𝐷MI

+ 𝜆5
𝑦
𝐷MI

. (27)

We set 𝜆4 and 𝜆5 to 0.005 for our experiments.
For inference, our model was designed to respond to scenarios

where test features also have missing values or even when all tab-
ular features are missing, using MRI scans alone to predict amyloid
positivity (Fig. 1(c)).

The encoder 𝐸ℎ should synthesize the embedded vector 𝐡 that serves
to make the classifier 𝐶 achieve a high classification performance. In
addition, 𝐸ℎ should also help 𝐸𝐻 and 𝐺MI synthesize the over-sampled
embedded vector �̂� whose distribution resembles that of 𝐡. Thus, we
trained 𝐸ℎ using the following loss function 𝐸ℎ

which is a linear
combination of a reconstruction loss function ℎ

recon and a cross-entropy
loss function 𝑙

𝐶 :

ℎ
recon = ‖𝐡 − �̂�‖22 (28)

𝑙
𝐶 =

[

−𝑦 ⋅ log𝐶(𝐬𝑙)
]

. (29)

Therefore, 𝐸ℎ is trained to optimize the following objective:

min
𝐸ℎ

ℎ
recon + 𝑙

𝐶 . (30)

Our method has additional methodological contributions to Hexa-
GAN. The original HexaGAN uses a zero-centered gradient penalty [24]
to stabilize adversarial learning. However, keeping the gradient near
zero makes training slow, and computing gradient penalties in an
element-wise manner for high-dimensional data requires impractical
computation time. Therefore, we applied spectral normalization [25]
to the weights of all the layers in our network, which promotes stable
convergence much more quickly. To improve the generalization of
the encoder 𝐸ℎ, we employed DenseNet pretrained on the ImageNet
dataset [26,27]. Representations learned from a large-scale dataset
help to improve generalization performance as a rule of thumb even
for a specific medical application with data having different input
dimensions and the number of channels [28]. The network architecture
of each component and training details are described in Table A.4 in
Appendix and Appendix A.2.

2.7.4. Model comparison
When training our model with MRI scans alone, 𝐸𝐻 and 𝐺MI are not

required, and 𝐺CG synthesizes embedded vectors 𝐡 instead of hidden
vectors 𝐇. When training our model with only tabular data, 𝐸ℎ is not
used. For comparison, we used various machine learning methods for
imperfect dataset problems. We constructed several benchmark models
consisting of cascade combinations of the machine learning methods
and the same classifier as 𝐶 of our model. To solve the imperfect
dataset problem for the benchmark models, we used column-wise
deletion, mean imputation, 𝑘-nearest neighbor (kNN) imputation [29]
and multiple imputation by chained equation (MICE) [30] to deal with
the missing data problem; kNN and label propagation [31] to deal
with the missing label problem; and synthetic minority oversampling
technique (SMOTE) [32], adaptive synthetic (ADASYN) method [33],
cost sensitive loss (CS) [34] and class rectification loss (CRL) [35] to
deal with the class imbalance problem. Since all labeled data have one
or more missing values, it is impossible to deal with missing values
via a list-wise deletion when both labeled and unlabeled data are

used. We computed the area under the receiver operating characteristic
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(AUROC) curve estimated by 5-fold cross validation implemented in
Scikit-learn [36] to evaluate generalized classification performance. We
also performed feature ablation trials on a partition of the feature set
consisting of MRI scan and tabular data to check our assumption that
combining these types of data improves performance.

We evaluated the effect of imputation on the classification perfor-
mance of our model as part of our exploratory process of determining
where high accuracy came from. We randomly removed between 10%
and 90% of observed tabular feature values and imputed these missing
values using our model and the aforementioned imputation techniques.
This process was repeated 100 times, each starting at a different ran-
dom state for each missing rate. We then computed the 5-fold average
root mean square errors (RMSE) between the imputed and original
values.

2.8. Analysis by t-stochastic neighbor embedding

We inspected the changes that occurred to the spaces of the hidden
features (𝐇) and input features (𝐬) as the model was trained. For this
analysis, we trained a randomly initialized model with all the data. At
each epoch, we visualized the observed hidden features 𝐇𝑙 synthesized
by 𝐸ℎ and 𝐸𝐻 ; and the synthetic hidden features 𝐇𝑔 synthesized by 𝐺CG
by reducing their dimensionality using t-stochastic neighbor embedding
(t-SNE) [37]. We visualized the labeled input features 𝐬𝑙 = (�̂�𝑙 ,𝐡𝑙), and
the synthesized input features 𝐬𝑔 = (�̂�𝑔 , �̂�𝑔) in a similar way.

2.9. Discriminative regions and variables

Feature attributions allow us to quantify how discriminative regions
and variables are. We first chose the model that produced the best
predictions out of the five sets of models learned during stratified 5-
fold cross validation. We then trained the model from these models
using the whole of each dataset until training AUROC reached 1 from
the chosen model. We then computed feature attributions 𝐴𝑛 for 𝑛th
participant using the integrated gradient (IG) algorithm [38]:

𝐴𝑛 =
IG𝑓

(

𝑋𝑛, 𝑋min
)

+ IG𝑓
(

𝑋𝑛, 𝑋max
)

2
, (31)

here IG𝑓 is an integrated gradient functional depending on a deep
earning model 𝑓 , 𝑋𝑛 = (𝐭𝑛, 𝐼𝑛) is observed features which consist of
abular features and an MRI scan, and 𝑋min and 𝑋max are features that
ave the same size as 𝑋𝑛 and have the values all 0 and 1, respectively.
G𝑓 (𝑋𝑛, 𝑋min) was calculated by summing the gradients of the model
utput with respect to a sequence of 𝑘 + 1 progressively interpolated
eatures between 𝑋min and 𝑋, as follows:

G𝑓 (𝑋𝑛, 𝑋min) = (𝑋𝑛, 𝑋min) × ∫

1

0
∇𝑓

(

𝛼 ×𝑋𝑛 + (1 − 𝛼) ×𝑋min
)

𝑑𝛼, (32)

≈ (𝑋𝑛, 𝑋min) ×
𝑘
∑

𝑖=0
∇𝑓

( 𝑖
𝑘
×𝑋𝑛 + 𝑘 − 𝑖

𝑘
×𝑋min

)

. (33)

G𝑓 (𝑋𝑛, 𝑋max) was calculated in similar manner.
For tabular data 𝐭, we define the importance of the 𝑖th tabular feature

𝑖 as 𝑛
𝑡𝑖
= (𝐴𝑛

𝑡𝑖
)2, where 𝐴𝑛

𝑡𝑖
is the attribution value of tabular feature 𝑡𝑖 in

he attribution map 𝐴𝑛. The importance value represents the amount of
nfluence for predicting early amyloid pathology regardless of its sign.

For MRI scans 𝐼 , attributions are computed at the region-of-interest
ROI) level, not at the voxel level, according to XRAI framework [39].
nstead of Felzenszwalb’s graph-based method used in the original
RAI paper for determining parcels, we used an atlas-tased segmen-

ation technique with the HM atlas that structurally divides a brain
mage, including cerebral gray/white matters, ventricles, cerebellum,
nd brainstem into pre-defined regions. Similar with tabular data, we
efined the importance of 𝑖th brain region 𝑟𝑖, as follows:

𝑛
𝑟𝑖
=

(

1
𝑛

∑

𝐴𝐼𝑣

)2

, (34)
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𝑟𝑖 𝑣∈𝑟𝑖
where 𝐴𝐼𝑣 is the attribution value of voxel 𝑣 in MRI scan 𝐼 , and 𝑛𝑟𝑖 is the
number of voxels of a brain region 𝑟𝑖. Since we are interested in brain
regions that affect the early amyloid pathology as tabular features, we
focused on the amount of influence for each region regardless of its
direction that represents whether the region should be bright or dark
to be classified into the correct class. We consider population-level
attribution as the square root of the average importance value over
labeled participants.

Finally, we defined discriminative regions on variables as ROIs
or tabular features with statistically significant attributions. Statistical
significance is determined based on Bonferroni-corrected 95% confi-
dence intervals for the population-level attribution computed by the
studentized bootstrap procedure with 10,000 bootstrap resamples.

3. Results

3.1. Dataset information

Table 1 shows the demographic, genetic, and clinical characteristics
of the participants in our discovery and practice datasets. In the dis-
covery datasets, APOE 𝜖4, age, and sex differed significantly between
the amyloid positive (A𝛽+) and negative (A𝛽-) groups. In the practice
dataset, APOE 𝜖4 and age were significantly different between the two
groups, as in the discovery dataset.

Three aspects of the imperfect dataset problem are relevant to this
study. Firstly, all the records in the discovery dataset lack at least
one of the 18 neuropsychological variables, which include measures
of cognitive functioning and IADL. These absences are concentrated in
records without a diagnosis (Table 2). In the practice dataset, not only
does the tabular data have missing values, but no neuropsychological
variables were observed. Secondly, 260 records in the discovery dataset
and 187 in the practice dataset correspond to participants who did not
have amyloid PET scans. Therefore, amyloid positivity is unknown in
almost half of the records. These records were used as unlabeled data
in the later process. Thirdly, the ratios between the sizes of the A𝛽+
and A𝛽- groups are about 1:2 and 1:5 in the discovery and practice
datasets, respectively.

3.2. Improved classification performance with imperfect datasets

Fig. 2(a), (b), and (c) contains the ROC curves of our method and the
top three combinations with the highest AUROC values from Tables B.6,
B.7, and B.8 in Appendix, respectively. The combinations are arranged
in the order of addressing the missing data, class imbalance, and miss-
ing label problems. In cases where a particular method is not employed
for a problem, it is omitted from the name of the combination. For ex-
ample, MLP/CNN + Mean + ADASYN means that the classifier consists
of multilayer perceptrons (MLP) and convolutional neural networks
(CNN) for both image and tabular data, and data are preprocessed by
mean imputation for the missing data problem, ADASYN oversampling
for the class imbalance problem, and no method is used for the missing
label problem.

Our model achieved an average AUROC for 5-fold cross validation
of 0.8609, which was 17.2% higher than the best of the other DL
models such as MLP and CNN with combinations of machine learning
methods (Fig. 2(a)). At optimal cut-offs determined by the Youden
index [40], our model showed an average accuracy of 0.8244, an
average sensitivity of 0.8415, and an average specificity of 0.8178.
Performance on each fold of our model and comparative results can
be found in Tables B.5 and B.6 in Appendix, respectively.

3.3. Synergistic effects of image and tabular data

When trained with just one of these types of data, our model
produced more accurate classifications than other DL models (Fig. 2(b)

and (c)); and these classifications improved when our model was
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Table 1
Demographic and clinical characteristics of participants.

Characteristics Discovery dataset Practice dataset

Total A𝛽+ A𝛽- 𝑝 values Total A𝛽+ A𝛽- 𝑝 values

𝑁 538 93 186 343 28 128
Age, yearsa 74.21

(5.84)
74.68
(5.87)

72.32
(5.98)

0.0020* 66.76
(12.04)

71.00
(6.54)

64.77
(15.85)

0.0012*

Sex (female)b, no. 128 30 98 0.0019* 217 18 78 0.9081
Education, yearsa 16.38

(2.68)
16.15
(2.70)

16.91
(2.43)

0.0178 11.52
(4.69)

11.46
(4.39)

11.43
(4.83)

0.9728

ICV, 𝓁a 1.50
(0.16)

1.47
(0.17)

1.49
(0.16)

0.6111 1.52
(0.17)

1.58
(0.18)

1.53
(0.16)

0.2201

Handness (LH), no.b 28 10 18 0.9438 N/Ad N/A N/A N/A
APOE 𝜀4 (0/1/2), no.c 369/137/12 50/39/4 147/36/3 < 0.001* 253/73/9 8/16/4 103/20/1 < 0.001*
MMSEa 29.06

(1.14)
29.03
(0.96)

29.00
(1.32)

0.8168 28.07
(2.04)

27.68
(1.56)

28.22
(1.53)

0.0960

CDR-SBa 0.040
(0.139)

0.065
(0.184)

0.040
(0.137)

0.2632 0.677
(0.694)

0.893
(0.600)

0.659
(0.470)

0.0276

ADAS13a 9.23 (4.33) 9.65 (4.42) 8.68 (4.37) 0.0836 N/A N/A N/A N/A

𝑁 , Sample size; no. Number; ICV, Intracranial volume; MMSE, Mini-mental state examination; CDR-SB, Clinical dementia rating, sum of boxes;
ADAS13, Alzheimer’s disease assessment scale, 13-item version.
a Data are given as the mean and standard deviation; 𝑝 values were calculated by two-sided Student’s or Welch’s two-sample 𝑡-tests.
b For dichotomous data, 𝑝 values were calculated by Yates-corrected Chi-square tests.
c Data are given as frequencies of the numbers of alleles; 𝑝 value was calculated by a two-sided Fisher’s exact test.
d Statistics are not available because features are not observed in the dataset.
* 𝑝 < 0.05. Significance adjusted after Bonferroni correction.
Table 2
Neuropsychological variables fed into our deep generative model, with rates of missing data.

Domain Measure Missing rates in discovery dataset (%)

A𝛽+ A𝛽- Label missing Total

Language BNTTOTAL 0 0 10.81 5.20
CATANIMSC 0 0 10.04 4.83

Learning & memory AVLT-immediate 0 0.54 11.58 5.76
AVLT-delayed 0 0 10.42 5.02
AVLT-recog 0 0 10.42 5.02
Learning 0 0 10.81 5.20
IntErr 0 0.54 11.58 5.75
ProINTFC 0 0 10.81 5.20
RetroINTFC 0 0.54 11.58 5.76

Attention TRAASCOR 0 0 10.04 4.83
DIGITSCOR 100 100 14.29 58.74

Executive TRABSCOR 0 0.54 10.04 5.02
DSPANFOR 100 100 14.29 58.74
DSPANBAC 100 100 14.29 58.74

Perceptual-motor CLOCKSCOR 0 0 10.04 4.83
COPYSCOR 0 0 10.42 5.02

IADL FAQ 0 0 10.81 5.20
ECogPT 1.08 0 95.75 46.28

BNTTOTAL, Boston naming test, total score; CATANIMSC, Category fluency, animals; AVLT, Rey auditory verbal learning test; IntErr, intrusion
error; ProINTFC, proactive interference; ReteroINTFC, retero interference [19]; TRAASCOR/TRABSCOR, trail making test, Part A/Part B;
DIGITSCOR/DSPANFOR/DSPANBAC, digit span, digit symbol/forward#:total correct/backward#:total correct; CLOCKSCOR, clock drawing, total;
COPYSCOR, clock copy, total; FAQ, functional activity questionnaire; ECogPT, everyday cognition, participants.
Fig. 2. Classification Performance of our model. ROC curves over 5-folds for our model and comparative classifiers, trained with both MRI scans and tabular data (a), with only
MRI scans (b), and with only tabular data (c).
7
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Fig. 3. ROC curves over 5-folds for our method and pretrained encoders, trained with
both MRI scans and tabular data.

Table 3
Performance comparison on the feature extraction. Recon and CE denote the
reconstruction loss and cross-entropy loss for pretraining, respectively.

Method AUROC F1-score PRAUC

Ours 0.8609 0.7596 0.6421
Recon 0.7187 0.6095 0.5869
Recon+CE 0.6933 0.5751 0.5713
CE 0.6824 0.5949 0.4593

trained with both types of data. This contrasts with our observations
of discriminative DL models, which do not perform much differently
when MRI scans are added to tabular data. Further details of these
comparisons are presented in Tables B.6, B.7, and B.8 in Appendix.

3.4. Effectiveness of feature extraction

To evaluate the effectiveness of the encoder’s feature extraction, we
conducted comparative experiments between pretrained embeddings
and our method on the discovery dataset. Specifically, we pretrained
networks with the same architecture as our encoders (𝐸𝐻 and 𝐸ℎ)
sing either the reconstruction loss, the cross-entropy loss, or both.
ean imputation and ADASYN oversampling are applied to mitigate

he potential negative impact of the imperfect dataset problem during
retraining, which were identified as the most effective combination in
able B.6 in Appendix. Subsequently, we integrated these pretrained
etworks, with their weights frozen, in place of the encoders, and
rained the remaining components of HexaGAN.

Fig. 3 and Table 3 illustrate the results of the performance com-
arison. Our method outperformed pretrained embeddings across all
erformance metrics. We attribute this to the interactions between
omponents of our model during training, particularly through the
dversarial loss with the discriminator. Additionally, the use of the
ross-entropy loss calculated on better imputed data contributed to the
nhanced performance.

.5. Imputation of missing values

We compared the performances of our model and comparative
ethods using root mean square error (RMSE) values between the

mputed values and the original values computed from 100 sets of test
ata. We removed 10% to 90% of features at random from test data.
he error bar represents the standard deviation of RMSE values.

For our model, the average RMSE value increased from 0.16 to
.21 as the proportion of missing data increased from 10% to 90%,
uggesting our model was better at imputation even at 90% missing.
8

Fig. 4. Performance comparison on the imputation of missing data.

For all proportions of missing data, over 100 trials, our model showed
the lowest average RMSE values, followed by MICE, kNN, and mean
imputation, in that order (Fig. 4). In addition, our model showed
the lowest standard deviation of RMSE values over repeated trials at
all missing rates compared to the other models. Taken together, we
verify that our model achieved the best classification performance by
imputing missing values with more accurate and robust values.

We also found that, with all the methods, the RMSE increases
rapidly as the proportion of missing data increases, and then becomes
saturated (Fig. 4). This seems to be because the amount of meaningful
information converges downward when the missing rate reaches a
certain percentage in the data we used. Notwithstanding, our method
imputes missing values more robustly than other methods when there
is less information available (even at a 90% missing rate), which is
consistent with the results in the original HexaGAN paper [12].

3.6. Addressing the class imbalance problem

The class imbalance problem not only leads to poor generaliza-
tion [41], but is also related to poor accuracy. To address this issue,
we employed class-conditional generation to oversample the minority
class. This is considered an imputation of all features, conditioned on
the specific class. We verified that class conditional generation, adopted
by our framework to deal with this issue, was performed successfully.
We reduced the dimensionality of the hidden features (𝐇) and the input
features (𝐬 = (�̂�,𝐡)) of both the observed and synthesized data to two,
using the t-stochastic neighbor embedding (t-SNE) algorithm [37], and
visualize their distributions. The distributions of the labeled hidden
features 𝐇𝑙 and the labeled input features 𝐬𝑙 of observed data were
changed as the model was trained because the encoders 𝐸ℎ and 𝐸𝐻 and
the generator 𝐺MI were updated. We observed the distributions of the
synthesized hidden features 𝐇𝑔 and the synthesized input features 𝐬𝑔
s the model was trained (Fig. 5, columns 1–3). The distances between
lusters of synthesized and observed data seemed to increase during
ome epochs, but the distributions of 𝐇𝑔 and 𝐬𝑔 eventually chased those
f 𝐇𝑙 and 𝐬𝑙 (Fig. 5, columns 4–5). The convergence of the distributions
f the synthesized and observed values was seen to be accompanied
y improved separation of the A𝛽+ and A𝛽- groups. This suggests

that our model accurately learned the data manifold occupied by the
hidden features, and that it synthesized data that is realistic for each
group. This solution to the class imbalance problem can be expected to
improve the classification accuracy of the model.
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Fig. 5. t-SNE analysis of the class conditional generation performance of our model. Successive charts, from left to right, show the displacement of hidden features (a) and input
features with imputed values (b) as the model is trained.
Fig. 6. Inference using partial features. (a) The classification performance. The average AUROCs over all possible combinations of features are shown as black dots, each within
a box-and-whisker plot. The green solid circle shows the performance when a model trained on both tabular features and MRI scans was tested with only MRI scans. The purple
dashed line shows the performance of a model trained on MRI scans alone. (b) The ability of our model to make the same prediction when using partial features in inference.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
3.7. Beyond missing values: imputing missing features

We tested the ability of our model to cope with features that are
missing entirely. We measured the 5-fold average of test AUROCs using
the trained model as features are removed one by one, measured by 5-
fold cross validation. We greedily removed the features which produced
the largest drop in AUROC. Fig. 6(a) shows that the AUROC drops
sharply, as expected, but the AUROC remains above 0.74. Even when
the fully trained model was tested with only MRI scans (Fig. 6(a),
green solid circle), it showed better performance than the model that
was trained with only MRI scans (Fig. 6(a), purple dashed line). This
model is similar to TripleGAN [42] but it performs oversampling in an
embedded vector space as well as semi-supervised learning.

We also tested the ability of our model trained with both MRI
scans and all tabular features to make the same predictions when using
different subsets of the features in inference. We used Rand indices [43]
to compare predictions of unlabeled data with all tabular features
(reference) and those of subsets of features. We greedily removed the
features that produced the largest drop in the Rand index. Predictions
become less consistent as features are excluded, as we would expect.
Nevertheless, only 12.3% of predictions changed when all the tabular
features were excluded (Fig. 6(b)).

This was evaluated using the Rand index [43] to ‘reference’ labels
(predictions) of unlabeled data when all tabular features were used as
features were removed one by one.
9

3.8. Translation from discovery to practice datasets

It is desirable to use the rich information available in the dis-
covery dataset from a large cohort study when we train the model
with a practice dataset collected in another clinical setting. However,
both the feature sets and the diagnostic criteria found in the practice
dataset from a specific clinical context can differ from those in the
discovery dataset (Fig. 7(b), left plot). The discrepancy between the
data distributions of the large cohort data and the practice dataset is
addressed by transfer learning and fine-tuning (Fig. 7(a)). Specifically,
we initially trained the model using the weights obtained from fold 3
of the discovery dataset, which exhibited the best AUROC (as shown
in Table B.5). Subsequently, we continued training this model on the
entire discovery dataset until achieving an AUROC of 1. We then
trained the model on the practice dataset. This allows a model trained
on the discovery dataset to synthesize features missing in the practice
data due to not being collected by the relevant hospital, and then to
use them to make predictions from the practice data.

We can visualize the labeled input features 𝐬𝑙 by reducing their
dimensionality using t-SNE. Looking at 𝐬𝑙 obtained from the model
trained with the discovery dataset, the A𝛽− and A𝛽+ groups in the
practice datasets are not clearly differentiated. After fine-tuning the
model with the practice dataset, the separation of the A𝛽− and A𝛽+
groups in the practice dataset is much clearer (Fig. 7(b), right plot),
indicating that the model has been adjusted to the practice dataset.
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Fig. 7. Transferring information obtained from a large cohort study to specific clinical practice settings. (a) Scenario on clinical translation from the discovery dataset (obtained
from the large cohort study) to the practice dataset (collected in another clinical setting). (b) Visualization of input features with imputed values (𝐬) before and after fine-tuning.
(c) ROC curves for our model fine-tuned with the practice dataset and comparative models. (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
After fine-tuning, our model achieved an average AUROC of 0.9143,
an average accuracy of 0.8528, an average sensitivity of 0.9667, and
an average specificity of 0.8286 at optimal thresholds determined by
the Youden index (Fig. 7(c), red line). The effectiveness of fine-tuning
is demonstrated by the significantly worse performance of a model
trained from randomly initialized weights (Fig. 7(c), cyan line). Our
method also outperforms other deep learning models with machine
learning techniques designed for imperfect datasets (Fig. 7(c), gray
line). We can also see that semi-supervised learning improves the
prediction performance (Fig. 7(c), red versus yellow and cyan versus
blue).

3.9. Discriminative regions and variables related to amyloid positivity

The three most discriminative regions of amyloid positivity exist
in the right posterior temporal lobe, and in the right and left lateral
remainders of the occipital lobes (Fig. 8(a) and (b)). The most discrim-
inative tabular features are sex and the number of APOE 𝜖4 alleles
(Fig. 8(c)).

When our model is trained using fine-tuning with the practice
dataset, the most discriminative regions or variables were consistent
with those with the discovery dataset. However, the significance pat-
terns were somewhat different from each other. The top three discrim-
inative regions are the left and right lateral remainders of the occipital
lobes, and the brainstem (Fig. 8(d) and (e)). Again, the most discrim-
inative tabular features are sex, and the number of APOE 𝜖4 alleles
are highly discriminative of amyloid positivity. The most discriminative
tabular feature is the number of APOE 𝜖4 alleles (Fig. 8(f)).
10
4. Discussion

We have proposed a deep learning technique for predicting the pre-
clinical stage of Alzheimer’s disease in cognitively normal individuals
from structural magnetic resonance imaging scans, demographic vari-
ables and various cognitive scores. The proposed model can cope with
real-world situations in which (a) the training dataset is imperfect, (b)
the feature set of the test data is a subset of the features used in training,
and (c) different labels are used in the test and training data. Our deep
generative model overcomes these real-world problems in the clinical
implementation of deep learning for the determination of early A𝛽
pathology by implicitly estimating a joint distribution of features and
outcomes [12]. We also show that non-linear discriminative regions can
be used to explain how our model allocates data to A𝛽+ or A𝛽−.

The HexaGAN framework successfully addressed the imperfect
dataset problem in terms of ‘imputation’ by creating additional realistic
data: substitutes for missing values were created by optimizing element-
wise adversarial loss between a generator 𝐺MI and a discriminator
𝐷MI. This is shown to be more accurate than previous competitive
techniques; pseudo-labels to replace missing labels were generated
using a classifier 𝐶, which is trained with the discriminator 𝐷MI in ad-
versarial fashion; and instances of the minority class were oversampled
by the class-conditional generation. Our model based on the HexaGAN
framework efficiently utilizes imperfect data and, therefore, effectively
predicts diagnoses in a real-world situation while interplaying between
components to solve these sub-problems simultaneously, not separately
in a different order.
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Fig. 8. Discriminative regions and variables of amyloid positivity determined by our model. (a) Brain maps for interpreting how our model trained with the discovery dataset
predicted amyloid positivity. Color scale represents importance values, and dark blue regions make no significant contribution to classifying amyloid positivity. (b) Discriminative
regions that cannot be shown on the cortical surface. (c) Discriminative features: those colored dark blue make no significant contribution to classifying amyloid positivity. (d)–(f)
Discriminative regions and variables, fine-tuned with the practice dataset. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
The imputation of missing data is based on the data distribution.
However, it is difficult to estimate the distribution of high-dimensional
features of MRI scans together with tabular data. Thus, we reduce
the dimensionality of this distribution. Firstly, we selected 18 slices
from the total of 210 coronal slices of MRI scans. The prediction
performance of our model with only a small number of slices rather
than the whole image indicates that deep learning can be applied to
predict the preclinical stage of AD using MRI scans acquired in clinical
practice. Secondly, we introduced the encoder 𝐸ℎ into HexaGAN to
extract low-dimensional embedded vectors 𝐡 from the MRI scans. Our
model can oversample embedded vectors 𝐡 with hidden features from
the image data, which makes imputation much more straightforward,
rather than a high-dimensional MRI scan per se, which could depress
the classification performance by the curse of dimensionality [44].

The prediction performance of our model trained with the discov-
ery dataset was the AUROC of 0.8609±0.0266 (Fig. 2), which was
higher than previous models trained with cross-sectional structural MRI
scans [45–48], and comparable with a model trained on longitudinal
structural MRI scans [49]. We attribute this performance improvement
to the capability of DL models to find non-linear relationships between
features and predictions. In our model, this capability is increased by
using all observed data efficiently via imputation, which increases the
number of data available for training. This theoretically brings down
the upper bound on the difference between the generalization error
11
and the empirical error [50]. In addition, reducing the dimensionality
of the MRI scan is a pragmatic way to reduce the size of the problem
and to make the predictions of our model more comprehensible. These
features of our model are combined with deep generative models
and appear to give better results than previous studies [51] with the
currently feasible capability of DL models.

For the class imbalance problem, our approach leverages the adver-
sarial game between 𝐺CG and 𝐷CG to learn the distribution of hidden
features corresponding to the minority class (𝑝(𝐇𝑔|𝑦𝑔)). Additionally,
𝐺MI models the distribution of input features given the hidden features
(𝑝(𝐬|𝐇)). By combining 𝐺CG and 𝐺MI, we can model the distribution of
input features given the minority class

(

𝑝(𝐬𝑔|𝑦𝑔) = 𝑝(𝐇𝑔|𝑦𝑔) 𝑝(𝐬𝑔|𝐇𝑔)
)

.
This allows us to effectively generate high-quality synthetic data for the
minority class through the excellent distribution estimation capability
of HexaGAN (Fig. 5).

Fig. 2(a) suggests that the predictions made by our model were most
accurate when both image and tabular data were used as features. The
accuracy dropped when only tabular data was used and dropped further
when only image data was used. This suggests that the encoder 𝐸ℎ
is effective in extracting features from reduced-dimensionality images
obtained from MRI scans, although the tabular features are more impor-
tant. In addition, 𝐸𝐻 of our model combined the essential information
of image data with tabular data and exerted a synergistic effect on
the performance of our model. On the other hand, the performance of
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discriminative DL models such as MLP or CNN was not much affected
by the omission of the image data. This is because CNNs are poor at
extracting information from image data [44].

We would expect our network to be applicable to many clinical
situations, in which both the available features and their labeling differ
from those in the dataset used to train the model (Fig. 7(a)). Our
model can impute values for features absent from the practice dataset
by estimating the class-conditional density 𝑝(𝐇|𝑦). The effectiveness of
this is shown in Fig. 6(a). The problem of inconsistent labeling can
be addressed by fine-tuning. Although fine-tuning confines the search
area to learn the model for new data, models can employ information
from the large data inherent in pretrained models [27]. Several studies
corroborated that fine-tuning is also effective in constructing prediction
models for biomedical data [52,53]. In addition, fine-tuning can also
be beneficial for generative models when the size of a training dataset
is limited to generate synthetic data [54]. Fig. 7(b) shows that fine-
tuning is successful in adjusting our model to the practice dataset: the
difference in the class-conditional density 𝑝(𝐬|𝑦) between the discovery
dataset and the practice dataset is reduced, and the model’s predictions
are more accurate (Fig. 7(c)). Fine-tuning with the practice dataset had
little effect on the discriminative profile of either the image or the
tabular data (Fig. 8).

Explainable AI is a method that allows humans to understand the
outputs generated by machine learning models. It helps to character-
ize model accuracy and fairness and describes the expected effects
and potential biases of the model [55]. Individual-level explainability
describes the prediction of an instance created by the model. This
may provide an understanding of each individual (e.g., false posi-
tives or false negatives). Population-level explainability is measured by
pooling information on individual-level explainability. This provides
abstraction and summary of the model’s decision boundary through
discriminative variables and provides the model’s reliability within the
comprehension capability of humans (e.g., physicians).

DL models are known to be difficult to make or verify hypotheses.
Nevertheless, it is often valuable to know how the features influence
a prediction. Discriminative regions and variables can help physi-
cians understand model predictions and diagnose diseases, while also
providing reliability to patients. The top three discriminative regions
are more associated with the regions exhibiting pathological changes,
including A𝛽 and tau deposition. It is expected because individuals in
the preclinical AD stage experience these changes before the structural
change or cognitive decline [56]. Cerebral regions with the highest
discriminative power are mostly in the posterior region of the brain,
linked to the late stages of A𝛽 pathology [57,58]. High discriminative
power was also observed in the midbrain in which A𝛽 is deposited at an
earlier stage of symptomatic AD [59]. Although this deposition occurs
after the preclinical AD stage, our PET-based criteria for determining
amyloid positivity leads to its high discriminative power, as it tends
to favor the much later stages of amyloid pathology compared to
cerebrospinal fluid (CSF) measures [60]. In addition, the midbrain (and
cerebellum) is related to the early stage of tau pathology [61–63],
consistent with tau deposition occurring after amyloid deposition [56].
These discriminative regions also overlap with regions from previous
classifications [64,65]. We note that this discriminative power may
not be a direct result of amyloid or tau deposition, but a concomitant
alteration of texture or shape derived from pathological changes. For
the tabular features, the association between the presence of APOE 𝜀4,
he most discriminative variable in our model, and A𝛽 deposition has
een previously reported [47,66,67]. Sex, an important discriminator
n our network trained on the discovery dataset alone, is known to be

factor in AD [68–70], but the discriminative power of this feature
ay be, in part, influenced by a characteristic of the dataset, which

s skewed toward female participants (Table 1). Our ablation studies
Fig. 6(a)) also suggested that these two features were the most discrim-
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native. We believe that this is the first study in which XAI techniques
have been applied to multi-modal (image and table) data and provided
discriminative regions and features for the entire dataset as well as for
each participant.

Our model has some limitations. Firstly, an MRI scan is always
required for inference. This is mainly because all records in the datasets
we used have MRI scans. We plan to extend our method to enable
inference from tabular data alone by incorporating the missingness of
MRI scans. Secondly, it is not clear whether the importance values that
are used to interpret model predictions arise from the morphological
characteristics of the brain, such as cortical thickness or cortical widen-
ing, rather than solely from the MRI intensity. We leave this avenue
of research for future work. Furthermore, there have been studies on
predicting the progression of AD from longitudinal data [71–73]. We
believe that extending our research to predict preclinical AD from
longitudinal data is also an intriguing future work.

In conclusion, we developed a method for detecting the amyloid
positivity of CN individuals using proxy measures, including structural
MRI scans, demographic information, and clinical scores with a deep
generative model. In tandem with the growth of artificial intelligence
(AI) systems for electronic health records (EHRs), deep generative
models will effectively address the imperfect dataset problem in EHRs
and allow us to successfully perform clinical translation. Moreover, the
fusion of XAI techniques and statistical tests will help locate important
regions and features for detecting diseases and provide the reliability
of the model in the real world.
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Appendix A. Details on learning deep neural networks

A.1. Network architectures

The detailed architecture of seven components in our model can be
found in Table A.4. For each column in Table A.4, the rows represent
layers of a given component in sequence, beginning with the input layer
and ending with the output layer.

A.2. Training details

Each component of the whole system is updated in order. Since the
distribution of 𝐻 is altered by updating 𝐸𝐻 and 𝐸ℎ, we update 𝐺CG
and 𝐷CG 30 times for each update of the other components, in order to
estimate the distribution of 𝐻 accurately. That is, 30× (𝐺CG → 𝐷CG) →
𝐸𝐻 → 𝐺MI → 𝐷MI → 𝐸ℎ → 𝐶.

We adapted HexaGAN to deal with problems derived from the size

of MRI data in two ways. Firstly, we added an additional encoder
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Table A.4
Network architectures.
𝐸ℎ 𝐸𝐻 𝐺MI 𝐷MI

𝐼 ∈ R168×190×18 (𝐭,𝐦) ∈ R27+27 𝐇 ∈ R256 𝐭 ∈ R27

DenseNet121 FC(512) + SN + ReLU FC(512) + SN + ReLU FC(2048) + SN + LReLU
FC(2048) + Sigmoid FC(2048) + SN + ReLU FC(512) + SN + ReLU Concat(𝐡) ∈ R2048+2048

Concat(𝐡) ∈ R2048+2048 FC(512) + SN + ReLU FC(512) + SN + LReLU
FC(512) + SN + ReLU FC(512) + SN + ReLU FC(512) + SN + LReLU
FC(512) + SN + ReLU FC(512) + SN + ReLU FC(512) + SN + LReLU
FC(256) + Tanh FC(512) + SN + ReLU FC(512) + SN + LReLU

FC(27+2048) + Sigmoid Projection(𝑦, 27+2048+2) + Sigmoid

𝐺CG 𝐷CG 𝐶

(𝐳, 𝑦) ∈ R27+2 (𝐇, 𝑦) ∈ R256+2 𝐭 ∈ R27

FC(512) + SN FC(512) + SN + LReLU FC(2048) + ReLU + Dropout(0.5)
FC(512) + SN FC(512) + SN + LReLU Concat(𝐡) ∈ R2048+2048

FC(512) + SN FC(512) + SN + LReLU FC(512) + ReLU + Dropout(0.5)
FC(256) + Tanh FC(512) + SN + LReLU FC(512) + ReLU + Dropout(0.5)

Projection(𝑦, 1) + Sigmoid FC(2) + Softmax

FC(𝑚): Fully-connected layer with hidden dimension 𝑚.
SN: Spectral normalization [25].
DenseNet121: DenseNet model [26] pretrained on the ImageNet dataset.
ReLU, LReLU, Tanh, Sigmoid, Softmax: Activation functions.
Concat(𝑎): The output of the previous layer is concatenated with 𝑎.
Dropout(𝑝): Output neurons are randomly turned off with probability 𝑝 [74].
Projection(𝑦, 𝑑): Projection layer [21] to inject the conditional information of 𝑦 with output dimension 𝑑.
Table B.5
Classification performance of our model over five folds.

Dataset Fold AUROC Cut-offa Sensitivityb Specificityc Accuracyd

Discovery dataset

Fold 1 0.8757 0.0101 1.0000 0.7105 0.8036
Fold 2 0.8165 0.1168 0.6842 0.8919 0.8214
Fold 3 0.8834 0.3193 0.7895 0.8649 0.8393
Fold 4 0.8720 0.0039 0.7895 0.8378 0.8214
Fold 5 0.8574 0.0001 0.9444 0.7838 0.8364

Practice dataset

Fold 1 0.8333 0.7339 0.8333 0.8077 0.8125
Fold 2 0.9000 0.0048 1.0000 0.7692 0.8065
Fold 3 0.9385 0.0035 1.0000 0.8462 0.8710
Fold 4 0.9667 0.6872 1.0000 0.9200 0.9355
Fold 5 0.9333 0.0002 1.0000 0.8000 0.8387

AUROC, area under the receiver operating characteristic curve.
BOLD: Folds where the highest AUROC was achieved.
a Optimal cut-offs were determined by the Youden index.
b Sensitivity = (number of individuals correctly identified as A𝛽+)/(total number of A𝛽+ individuals).
c Specificity = (number of individuals correctly identified as A𝛽-)/(total number of A𝛽- individuals).
d Accuracy = (number of correctly identified individuals)/(total number of individuals).
Table B.6
Classification performance with MRI scans and tabular data.

Architecture Missing data Class imbalance Missing label AUROC F1-score PRAUC

MLP + CNN

Column-wise deletion

– – 0.7043 0.2128 0.5523
SMOTE – 0.7111 0.5255 0.5837
ADASYN – 0.7231 0.5104 0.5769
Cost-sensitive – 0.7032 0.2057 0.5589
Class rectification loss – 0.7066 0.3061 0.5560

Mean imputation

– – 0.7099 0.2334 0.5641
SMOTE – 0.7104 0.4999 0.5767
ADASYN – 0.7347 0.4040 0.5990
Cost-sensitive – 0.7143 0.0986 0.5801
Class rectification loss – 0.7343 0.5067 0.5820
ADASYN 𝑘-nearest neighbors 0.6889 0.5093 0.5547
ADASYN Label propagation 0.6761 0.4999 0.5156

𝑘-nearest neighbors

– – 0.7141 0.3182 0.5570
SMOTE – 0.7110 0.3986 0.5553
ADASYN – 0.7121 0.4217 0.5778
Cost-sensitive – 0.7280 0.2124 0.6042
Class rectification loss – 0.7221 0.2228 0.5593
Cost-sensitive 𝑘-nearest neighbors 0.7044 0.1013 0.5809
Cost-sensitive Label propagation 0.7340 0.2532 0.5858

(continued on next page)
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Table B.6 (continued).
Architecture Missing data Class imbalance Missing label AUROC F1-score PRAUC

MICE

– – 0.7180 0.1000 0.5689
SMOTE – 0.7150 0.5013 0.5757
ADASYN – 0.7100 0.5198 0.5789
Cost-sensitive – 0.7004 0.0000 0.5600
Class rectification loss – 0.7075 0.3174 0.5665
SMOTE 𝑘-nearest neighbors 0.6818 0.4999 0.5452
SMOTE Label propagation 0.6840 0.5200 0.5568

Our model HexaGAN HexaGAN HexaGAN 0.8609 0.7596 0.6421

AUROC, area under the receiver operating characteristic curve.
PRAUC, the area under the precision–recall curve.
Table B.7
Classification performance with MRI scans.

Architecture Class imbalance Missing label AUROC F1-score PRAUC

CNN

– – 0.6424 0.4054 0.5439
SMOTE – 0.6158 0.1013 0.5166
ADASYN – 0.6503 0.3986 0.5439
Cost-sensitive – 0.6021 0.0000 0.5128
Class rectification loss – 0.6217 0.0000 0.5364
ADASYN 𝑘-nearest neighbors 0.6229 0.1013 0.5175
ADASYN Label propagation 0.6503 0.4041 0.5526

Our model w/o 𝐸𝐻 , 𝐷MI, and 𝐺MI HexaGAN HexaGAN 0.6998 0.5715 0.6086

AUROC, area under the receiver operating characteristic curve.
PRAUC, the area under the precision–recall curve.
Table B.8
Classification performance with tabular data.

Architecture Class imbalance Class imbalance Missing label AUROC F1-score PRAUC

MLP

Column-wise deletion

– – 0.7481 0.6224 0.5884
SMOTE – 0.7511 0.6624 0.6277
ADASYN – 0.7496 0.6170 0.6263
Cost-sensitive – 0.7492 0.6126 0.6191
Class rectification loss – 0.7515 0.6084 0.6170

Mean imputation

– – 0.7373 0.6003 0.6216
SMOTE – 0.7335 0.6279 0.6184
ADASYN – 0.7409 0.6238 0.6218
Cost-sensitive – 0.7311 0.5768 0.6219
Class rectification loss – 0.7339 0.5899 0.6158
ADASYN 𝑘-nearest neighbors 0.7532 0.6093 0.5836
ADASYN Label propagation 0.7445 0.5999 0.5779

𝑘-nearest neighbors

– – 0.7409 0.5872 0.6271
SMOTE – 0.7402 0.6212 0.6202
ADASYN – 0.7419 0.6171 0.6265
Cost-sensitive – 0.7411 0.5933 0.6305
Class rectification loss – 0.7423 0.5933 0.6271
Class rectification loss 𝑘-nearest neighbors 0.7458 0.6061 0.6199
Class rectification loss Label propagation 0.7577 0.5983 0.6172

MICE

– – 0.7424 0.5955 0.6268
SMOTE – 0.7377 0.6287 0.6073
ADASYN – 0.7380 0.6311 0.6127
Cost-sensitive – 0.7345 0.5832 0.6197
Class rectification loss – 0.7392 0.5958 0.6198
– 𝑘-nearest neighbors 0.7441 0.6002 0.6079
– Label propagation 0.7503 0.6222 0.6005

Our model w/o 𝐸ℎ HexaGAN HexaGAN HexaGAN 0.7613 0.7514 0.6313

AUROC, area under the receiver operating characteristic curve.
PRAUC, the area under the precision–recall curve.
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network 𝐸ℎ in front of HexaGAN to reduce the dimensionality of the
data. To train the encoder 𝐸ℎ more efficiently, its training is augmented
by transfer learning using DenseNet with parameters pre-trained on
ImageNet [26,27] except the last two layers. We applied spectral
normalization to the weights of every layer of 𝐸𝐻 , 𝐷CG, 𝐺CG, 𝐷MI, and
𝐺MI except output layers of 𝐸𝐻 , 𝐺CG, and 𝐺MI, to stabilize the learning
process [25]. Further, we added projection discriminators to 𝐷CG and

MI, in order to reinforce class conditioning of the GAN [21].

We implemented deep neural networks using the Tensorflow li-
rary [75]. We used the Adam optimizer to update the networks with
14

p

he aim of minimizing loss functions through back-propagation. We
sed the Adam optimizer with 𝛽1 = 0 and 𝛽2 = 0.9. The learning rate of
was set to 0.0001, and those of 𝐷CG and 𝐷MI were set to 0.00016 by

pplying the two time-scale update rule (TTUR) [76], and that of the
ther components were set to 0.00004. We used one NVIDIA TITAN V
or training the model.

We calculated test AUROCs for all epochs during model training
nd stored the model parameters at the epochs that show the highest
est AUROCs at each fold. We averaged these five test AUROCs to
roduce a final classification performance. The CNNs in comparison
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models are trained in a similar way to ours, by transfer learning
from DenseNet parameters pre-trained on ImageNet. We also set their
hyperparameters, such as the learning rate, to the same values that we
used in our model.

Appendix B. Comparative experiment results

See Tables B.5–B.8.
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